

Linear and Nonlinear Verification of Gyrokinetic Microstability Codes

R. Bravenec Fourth State Research

> J. Candy General Atomics

> > M. Barnes

Rudolf Peierls Centre for Theoretical Physics, Univ. of Oxford, UK EURATOM/CCFE Fusion Assoc., Culham Science Centre, Abingdon, UK

> C. Holland The University of California, San Diego

Background

- Most gyrokinetic microstability codes now include passing and trapped electrons, accurate plasma shaping, multiple kinetic species, collisions, magnetic fluctuations, finite ρ*, and equilibrium E×B flow shear.
- Linear predictions of mode frequencies are now routine for interpreting turbulence and/or transport measurements in experiments.
- Nonlinear predictions of transport and/or turbulence characteristics in experiments are becoming more commonplace.
- However, the codes have not been verified (shown to correctly solve the underlying equations) for present-day experiments spanning a range of discharge conditions.
- No analytical verification in such regimes \Rightarrow
 - "benchmarking": Code is "correct" if it agrees with others (unlikely all would produce exact same erroneous result).

Background (cont.)

- An "analyst" develops experimentally relevant benchmarks through apples-to-apples comparisons between codes.*
- "Apples-to-apples"?
 - same plasma
 - same plasma shaping [EFIT or Miller formalism [R. L. Miller, et al., Phys. Plasmas 5 (1998) 973)]
 - same physics (EM, collisions, trapped electrons, etc.)
 - both periodic or global radial domain
 - both include E×B shear?
 - sufficient temporal, spatial, velocity-space resolutions

* GYRO and GS2 in what follows. Grant renewal calls for adding particle-in-cell (PIC) code GEM.

Validation NOT Shortcut to Verification

- Codes rarely agree with limited set of experimental data using default plasma profiles.
- Plasma profiles must be independently adjusted in all combinations within experimental uncertainties to seek agreement.

No way to distinguish code errors from experimental uncertainties

- Codes have never been shown to agree with all experimental data:
 - Electron, ion, impurity fluxes:
 - » Energy, particle, momentum
 - Fluctuation parameters, e.g.,
 - » electron density, temperature fluctuation levels
 - » density/temperature phase angle
 - » mean poloidal wave number

Benchmarking Algorithm

- 1. Extract data from transport analysis code, e.g., TRANSP or ONETWO.
- 2. Generate linear GYRO input file; translate to a GS2* input file.
- 3. Run both codes including "full physics."
- 4. If differences found between codes, remove shaping, collisions, etc. individually until agreement is reached \Rightarrow "reduced" benchmark.
- 5. Reinstate physics one at a time in different order.
 - agreement ⇒ successively more complex benchmarks
 - disagreement ⇒ source(s) of problem, e.g., collisions or combination of elongation and trapped electrons
- 6. Present results to code developers who must first concur with findings, then help seek resolution.
- 7. Repeat steps 5 and 6 until all terms included \Rightarrow "full physics" benchmark.
- 8. Generate nonlinear GYRO, GS2 input files. Repeat steps 3-7.
- 9. Repeat entire procedure for different radius, discharge, time, machine.
 - * and GEM in future?

GYRO/GS2 Comparisons

2.11	
0.992	
0.935	
0.011	
0.828	
1.07	
1.07	
2.64	
1.81	1
1.81	1
2.81	
-0.0855	
1.805	
0.580	
1.30	
0.0457	
0.150	
0.174	1
0.00346	1
0.00366	
1.32	
0.112	
	2.11 0.992 0.935 0.011 0.828 1.07 1.07 2.64 1.81 1.81 2.81 -0.0855 1.805 0.580 1.30 0.0457 0.150 0.174 0.00346 0.00366 1.32 0.112

DIII-D shot 128913, ρ = 0.5,
 t = 1.5 s (1 NB source)

- C. Holland, A. E. White, et al., Phys. Plasmas 16, 052301 (2009)
- Included:
 - electromagnetic (δB_{\parallel} neglected)
 - passing and trapped electrons
 - Miller shaping
 - electron collisions (Lorentz model)
 - one impurity (C⁺⁶)
- Neglected:
 - Finite ρ^* ($\rho^* \ll$ 1 anyway)
 - E×B flow shear

Frequencies for "Full Physics"

h-State

Frequencies without Collisions

h-State

Excellent agreement
 Differences in collision operators

Nonlinear Simulations

- 16 poloidal modes
- $0 < k_{\theta} \rho_s \leq 1$
- $L_{\theta} \sim 100 \rho_s$ (wavelength of lowest nonzero k_{θ})
- $L_r \sim 150 \rho_s$
 - $\neg n_r = 144 \text{ (GS2)} \Rightarrow \Delta r \sim \rho_s$
 - *n_r* = 192 (GYRO) $\Rightarrow \Delta r \sim 0.8 \rho_s$
- Velocity-space grid points: 128 (GYRO), 592 (GS2)
- Fluxes from \mathbf{B}_{\perp} found to be negligible

Nonlinear

Electron Energy Flux Spectra

with collisions

omitting collisions

Spectra with collisions peak at ~ half that with collisions

Conclusions

- For the plasma considered here, GYRO and GS2 frequencies and fluxes agree well for model including
 - magnetic fluctuations (transport from δB small, however)
 - passing and trapped electrons
 - Miller shaping
 - electron collisions (Lorentz model)
 - one impurity (C⁺⁶)
- Benchmarks at mid-radius with "full physics" (except $\rho^* \Rightarrow 0$, no $\mathbf{E} \times \mathbf{B}$ flow shear) have been formulated.

Future Work

- Resolve linear discrepancy in TEM region with collisions.
- Repeat at radius farther toward edge.
- Include E×B flow shear; compare to results of C. Holland,
 A. E. White, et al., Phys. Plasmas 16, 052301 (2009).
- Investigate other discharges:
 - **-** DIII-D high- β , strong shaping, suggestions?
 - C-Mod EDA H-mode, suggestions?
- If changes are made to one or both codes, code comparisons will be repeated. (Validation results by other groups will have to be revisited.)
- Incorporate GEM or GENE into benchmarking/verification.
 - Would greatly enhance credibility (GEM \Rightarrow PIC vs continuum)